Numerical analysis of history-dependent variational-hemivariational inequalities

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

History-dependent hemivariational inequalities with applications to Contact Mechanics

In this paper we survey some of our recent results on the existence and uniqueness of solutions to nonconvex and nonsmooth problems which arise in Contact Mechanics. The approach is based on operator subdifferential inclusions and hemivariational inequalities, and focuses on three aspects. First, we report on results on the second order history-dependent subdifferential inclusions and hemivaria...

متن کامل

Advances in Variational and Hemivariational Inequalities

We consider a nonlinear Dirichlet parametric problem with discontinuous right hand side in which we have a competing effect of sub and superlinear nonlinearities. A bifurcation type result is studied when the parameter tends to zero.

متن کامل

Recession Methods in Monotone Variational Hemivariational Inequalities

Throughout the paper we use standard notations except special symbols introduced when they are defined. All spaces considered are Banach spaces whose norms are always denoted by ‖ · ‖. For any space V we consider its dual space V ? equipped with the strong topology. We denote by 〈·, ·〉 the duality pairing between V and V . Let f : V → R ∪ {∞} be an extended-real-valued function. Identifying ext...

متن کامل

On a Type of Hyperbolic Variational–hemivariational Inequalities

We consider a hyperbolic variational–hemivariational initial value problem on a vector valued functions space. Using a regularization procedure and a Barbu result we obtain an existence result for a problem independent on u′.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China Mathematics

سال: 2020

ISSN: 1674-7283,1869-1862

DOI: 10.1007/s11425-019-1672-4